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On the theory of asymmetric shear flows past flat plates 

By RICHARD M. MARK 
Lockheed Research Laboratories, Palo Alto, California 

(Received 6 September 1965) 

When a semi-infinite flat plate is immersed parallel to an unbounded, plane, 
steady, asymmetric, constant shear flow of an incompressible viscous fluid, an 
interaction occurs between the surface-generated vorticity and the external 
vorticity. A physical assumption was made in a previous paper (Mark 1962) con- 
cerning this problem that the pressure field in a thin layer adjacent to the top-side 
of the plate may be accurately approximated by the undisturbed constant- 
pressure field-that which exists before the insertion of the plate into the flow. 
This means that the vorticity interaction is assumed to have no effect on the 
undisturbed pressure field. That this is a valid first approximation far down- 
stream along the plate where the interaction is intense is given rigorous support 
in this paper. 

The flow below the plate is examined on a heuristic basis. It is found that there 
is a strong possibility for the flow to separate from the lower surface near the 
leading edge of the plate. However, far downstream the flow settles down to a 
Stokes-type flow near the plate. 

1. Introduction 
In  this paper we shall add support to and extend the theory advanced by Mark 

(1962) (hereafter referred to as M )  concerning the problem of a semi-infinite flat 
plate of zero thickness that is fixed parallel to an otherwise undisturbed, plane, 
unbounded, steady, asymmetric, constant shear flow of an incompressible 
viscous fluid. This is admittedly a highly idealized flow model of a body immersed 
in a stream with transverse total pressure gradients (or transverse entropy 
gradients), but it is nevertheless amenable to analytical t rea tment the  results 
of which may provide some preliminary insight, if not a fundamental under- 
standing, of the actual flow phenomena. Problems of this kind have recently 
gained importance, particularly in connexion with the motion of blunt bodies at  
hypersonic speeds, in which strong entropy gradients exist across the shock layer, 
and it is thus useful to impart confidence to the methods that have been proposed 
for the treatment of such problems. 

It is expedient to review in perspective the theory presented in M.  First we 
pose the general flow problem mathematically as follows. The solution for the 
complete flow field around the plate is required to satisfy the full Navier-Stokes 
equations : 

au av 
ax ay 
-+- = 0, (1.la) 
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(1 . lb)  

(1.1c) 

and the boundary conditions: 

u = v = 0 on the plate y = 0 (x z 0 ) ,  (1 . ld)  

u-+U+wy,  v+0, p-+P as x+-co, ( l . l e )  

where (u, v) are the velocity components in the (x, y)-directions of the usual 
rectangular co-ordinate system, p is the pressure, p the density, p the viscosity 
coefficient, U the constant velocity component of the undisturbed flow, P the 
constant undisturbed pressure, and w the constant positive external vorticity 
(the local vorticity in the flow is here defined as Q = (aujay) - (avjax)). It is 
important to notice that the asymmetry feature of the oncoming flow is due to 
the requirement, since a viscous fluid is considered, that !2 be mathematically 
continuous everywhere far upstream of the plate. Since, otherwise, the admission 
of a discontinuity in the vorticity is incompatible with the motion of a viscous 
fluid, because diffusion would immediately smooth out the discontinuity. (Even 
if the effects of viscosity are ignored in a theoretical model, there would be an 
infinity of possible solutions depending upon the value of Q that may be 
arbitrarily prescribed along the surface of discontinuity.) 

No such complete solution of the above system has been found, but limiting 
solutions may be obtained that are valid in certain regions of the flow. It was 
shown in M that, for values of x such that the local Reynolds number Re, = Uxjv 
( v  is the kinematic viscosity) is large, a limiting flow solution exists in a thin layer 
adjacent to the plate for y 2 0. Qualitatively, some of the physical character- 
istics of the flow in such a thin layer are similar to thohe in the ‘boundary layer’ 
of the classical Prandtl-Blasius case (w  = 0). For example, diffusion of surface- 
generated vorticity occurs predominantly within the thin layer, and this pri- 
marily in the direction normal to the plate; i.e. the transition from the surface- 
generated vorticity to the external vorticity w is practically complete across the 
thin layer. As is well known, such behaviour is much like the diffusion of heat 
from a hot plate immersed parallel to a fast-moving stream (this stream must now 
be regarded as heated by an external energy source in order to preserve the 
analogy between external heat and external vorticity); i.e. the surface-generated 
vorticity, as it diffuses outwards from the plate, is immediately swept down- 
stream along streamlines that do not penetrate appreciably into the mainstream 
but instead remain nearly parallel to the plate. 

There exist important differences, however; so significant that we shall hence- 
forth call the thin layer the vorticity interaction layer and denote it by 0, for 
brevity. For example, when the oncoming stream is initially endowed with 
vorticity, the tangential velocity profiles at two given stations in 0, are no 
longer similar as in the classical case w = 0. Also, the interaction between surface- 
generated vorticity and external vorticity causes an unexpected ‘defect ’ Au, 
( = U + wy - u) in the tangential velocity relative to the undisturbed velocity at 
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the outer edge-which we denote by Dz-of D,, figure 1. (As in classical boundary- 
layer theory, we must accept the fact that the outer edge of D, cannot be located 
precisely, but, for practical purposes, it is convenient to define Dt as where trans- 
verse diffusion of surface-generated vorticity is negligible to within a pre- 
specified amount.) Thus, if y is of the order of the thickness 6 of D, and 6" repre- 
sents the outward shift of the streamlines a t  DE, then a fluid particle at  a distance 
( y  - S*) from the x-axis before the insertion of the plate, retains its x-momentum 

X 
___) 

/ I /  
FIGURE 1. Velocity profiles across the vorticity interaction layer 

on the top-side of the plate. 

when displaced by an amount S* to the position y after the insertion of the plate.7 
At DZ) Au, = wS*, where &* is in general a function of the transverse 'viscous 
length' J (vx /U)  and the vorticity number t = (l/L) J (vx /U) ,  where L = U/o is 
a transverse 'vortical length' (which may be interpreted as the transverse length 
across which the undisturbed tangential velocity changes by an amount U ) .  
When t + O ,  S*-+ 1*7211/(vx/U), which is the classical Blasius expression in the 
limit; when [+ m,S* -+ L, which is a constant in the limit. Thus, we have approxi- 
mately, Au, = 1-731Ut for < 1 and Au, = U for 

It should be mentioned that, in so far as the calculation of the flow external to 
D, is concerned, the existence of a velocity defect at D; means that we cannot 
simply regard D, as due only to an effective source flow emanating from the plate 
with a vertical velocity and thus treat the external flow as inviscid. Rather, with 
respect to this external flow problem, an additional boundary condition on the 
tangential velocity must be satisfied in some common region between D, and the 
unbounded domain external to it. This means, therefore, that it is necessary to 
retain the viscous terms in the equations governing the flow external to D,-i.e. 
a viscous theory is necessary in this region. (Of course, if this point of view is 
adopted, it must be shown that the viscous terms external to D, are of a lower 
order of importance than those within it.) 

The whole of the theory presented in M for the flow in y > 0 is necessarily 

t This physical phenomenon has a broader connotation than was earlier suspected; for 
example, it also occurs in the stagnation region of blunt bodies as observed in the exact 
solutions of Stuart (1959) in the plane case and Kemp (1959) in the axisymmetric case. 

$ The approximate result that Aus = 1.721UE for 5 < 1 may be extracted from the 
earlier work of Goldstein (1930) in his section (3.12). Glauert (1957) later deduced i t  
indcpendently . 

9 1.1 



460 Richard M .  Mark 

approximate when Re, is finite, but, as in all asymptotic approximations, the 
error is expected to diminish uniformly for all points within D, as Re, increases. 
The theory does not unravel solely from this hypothesis, however, for in the 
course of the analysis it was necessary to introduce the simplifying assumption 
that the undisturbed pressure field is insensitive to the presence of D,, at least to 
the first approximation. That is, the pressure was assumed to be independent of 
the effects of viscosity (hence of 5) and equal to P uniformZg in D, to the first 
approximation. This assumption appears to be well justified on purely physical 
grounds, since it was demonstrated a posteriori in M that D, steadily shrinks in 
thickness as both Re, and 5 steadily increase, which in the limit signifies that the 
retardation of the flow within D, cannot significantly disrupt the nearly tan- 
gential course of the streamlines external to D, (i.e. they do not penetrate 
sharply into the external flow), and hence cannot cause a sensible pressure dis- 
turbance in a flow that is devoid of extraneous lateral constraints. In Q 2 we shall 
supply a more rigorous justification of this assumption in the case of large 5 (we 
do not subscribe to complete mathematical rigour, however). It will be helpful 
physically to interpret increasing 6 as corresponding both to increasing ‘intensity ’ 
of the vorticity interaction and to increasing distance downstream from the 
leading edge. Thus we will refer to the weak vorticity interaction case as occurring 
near the leading edge and the strong vorticity interaction case as occurring far 
downstream from the leading edge. 

Due to the asymmetry of the oncoming flow, the flow below the plate (y < 0) is 
not so readily discernible intuitively as it was for the flow above the plate. In Q 3 
a heuristic approach will be adopted for the theoretical treatment of this bottom 
region, and it will be shown that an interesting flow phenomenon is possible. 

2. Theoretical justification of the constant pressure assumption for 
strong vorticity interaction 

We begin by elucidating what is meant by the Jirst approximation to the flow 
within D, on the top side of the plate. To do this in a systematic manner, we shall 
construct a special limit process for formally obtaining it. By so doing, we will 
have taken a necessary first step towards placing the first approximation within 
a general procedure for obtaining the exact solution of the problem, at least on 
a formal basis. 

According to the results of M ,  the appropriate set of dimensionless dependent 
quantities for D, is 

(Y is the dimensional stream function defined in the usual way), and the appro- 
priate set of dimensionless independent quantities is 

u -  ux 
Re, = -. 

V 

When the physical quantities used in the description of the flow within D, have 
been scaled in this manner, we shall refer to the transformed system as being 
placed on the D,-scale. 
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Next we define the appropriate limit process for D, as 

Iim,: Re,+cc with ( f , ? j )  fixedin (0 < f < co, 0 6 ?j < a). 
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Finally we define the following sequence of operations-which we denote by S,: 
. 
, . 
. . . 
Therefore, by applying S, to (1.1 a,  b,  c )  we obtain in a straightforward manner 

Place the physical quantity or relation on the D,-scale. 
Apply lim, to the transformed quantity or relation. 
Transform the limit quantity or relation back to the physical system. 

the first approximation for the equations governing the flow within D, as 
* 

( 2 . l a )  

(2 . lb )  

apjay = 0. (2 . lc)  

Although this limiting system is outwardly of the same form as the classical 
boundary-layer system, it nevertheless differs fundamentally from the latter in 
that the vorticity interaction phenomenon is preserved through the fixing of the 
vorticity number c under lirn,.t To understand the import of this better, it  is 
seen that both transverse length dimensions-y and L-have been scaled by the 
same factor (inverse of the viscous length), but their ratio y/L remains unchanged. 
In particular, suppose that the co-ordinate y corresponds to  Dg, i.e. suppose 
y = 6. Then using the results from M we have S/L N &' when f < 1 and 8/L N (3 
when &' 9 1, so that fixing 5 under lim, means fixing y/L when y = 6. In  other 
words, the ratio of the thickness of D, to the vortical length is required to be 
invariant both to the scaling operation and to an increase in the Reynolds 
number Re,. 

As in the classical case, (2.1 c )  states the remarkable fact that, at  a given station 
along the plate, the pressure in D, is independent of the distance y from the plate, 
despite the varying retardation of the flow across D, due to the action of friction. 
A direct consequence of this is that the pressure at the wall is now equivalent to 
the pressure at 0:. 

In  order to further clarify the role of the constant pressure assumption, we 
present a different formulation of the required asymptotic boundary condition a t  
D: than that given in M .  In  the first place, such an asymptotic condition must be 
consistent with, and hence derivable from, the system (2.1), since the fluid is 
actually in motion a t  Dt and is not constrained there in any manner. (If 
extraneous lateral constraints are present, it  is likely that a pressure gradient 
would be induced along the plate.) Now it may be justified a posteriori that the 
surface-generated vorticity decays exponentially as D$ is approached, i.e. trans- 
verse diffusion of surface-generated vorticity is negligible there-being occupied 
primarily by external vorticity. Thus, with the auxiliary asymptotic conditions 

In  conjunction with a suggestion made in 5 1, the introduction of the novel limit 
process lim, implies that a different external limit process other than the usual one must 
be constructed if successive approximations to the flow external to D, are to be compatible 
with those within D,. 
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a2u/ay2+0 and au/ay+o as D: is approached (i.e. as ?j+00) and setting 
v = - aY/ax, (2.1 b)  yields 

-+0 as g+m, 

where @ = iu2+ (p /p ) -wY .  This means that, for a fixed y, @+const. for all 
x > 0. To evaluate this constant we use the fact that a parabolic system requires 
an initial condition in order that the mathematical formulation be well-posed. 
Thus by requiring that 

u+U+wy, Y+Uy+&oy2, p + P  as x+O, 

we have (D + i U z  + (P/p)  as x + 0; but this result must also be true for all x > 0 ,  
so that the proper asymptotic condition is finally 

a@ 
ax 

*u2 + ( p / p )  - WY + $Uz + (P/p)  as g+ 00, (2.2) 

u = v = O  at y = O ,  (2-3) 

which, along with the no-slip conditions, 

completes the ‘exact ’ formulation of the first-approximation system. 
As in the classical case, the pressure itself must be specified a priori before such 

a system can be solved. Now on the D,-scale, (2.1 c) implies that p is in general 
a function of $ only; i.e. the pressure within D, is in general dependent on the 
nature of the vorticity interaction. We are therefore faced with the necessity of 
making a plausible assumption regarding the nature of the interaction on the 
pressure before we can commence with the solution. To this end it is assumed 
that the undisturbed pressure field is unchanged by the effects of the interaction, 
i.e. p = P and hence aplax = 0 uniformly in D, to the first approximation. We 
shall now provide a more rigorous basis for this assumption, other than the 
physical for the case of strong interaction. 

The first-approximation system is accordingly modified by dropping the 
pressure-gradient term from (2.lb) and setting p = P in (2.2) to give 

u2-+U2+2uY as g-too. (2.4) 

On the D,-scale the solution of this modified system would give Y or (u,@) as 
functions of (g,?j). An exact solution for arbitrary 5 is yet to be found, but a series 
solution for the weak-interaction case (< < 1) has been formulated by Goldstein 
(1930) and solved numerically by Glauert (1957), and an asymptotic solution for 
the strong-interaction case (5 B 1) has been given in M .  Also, an approximate 
solution for arbitrary 5 is obtained in M ,  and this in virtue of the usual approxi- 
mate momentum-integral method. 

For the present purpose it is expedient to re-derive the asymptotic solution 
for [ B 1 in a different form than that given in M .  First an examination of the 
approximate solution for $ 9 1 shows that the solution we seek must be of the 
form 

where < = [hj. The system governing the determination of g(<) is easily obtained 
as 

(2.6) 
3g’”+<2gf’ = 0) 

g = g ‘ = O  at < = O ,  2<9’=1+2g as <+m, 
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where primes denote differentiation with respect to 5. The solution satisfying 

where C = [9+I‘(z)]-1, I? being the gamma function. From this it may be con- 
firmed that the diffusion of surface-generated vorticity, being proportional to 
g ” ( g ) ,  decays in an exponential manner as Dg is approached. 

We now observe that the dimensionless quantities 6 and 6 may be rewritten as 

6 = .J(E/ReL), [ = y”(Re,/E)i, 

where Re, = U L l v  is the characteristic Reynolds number based on the vortical 
length L, E = x/L, andy” = y / L .  Thus thelimit 6+coisformallyequivalent to thelimit 
ReL+ 0 with 2 fixed (2 must be fixed in the domain of validity of the first approxi- 
mation, i.e. where Re, > 1 or E l/Re,). Also, C+ 0 is equivalent to Re,+ 0 with 
(2,y”) fixed, so that the existence of a Stokes flow is implied in the immediate 
proximity of the plate and far downstream from the leading edge, which is what 
one would expect if such a sublayer exists a t  all. In  other words, within D,, where 
viscous forces are of the same or greater order of importance as inertia forces, 
there exists a sublayer adjacent to the plate wherein viscous forces are much 
greater than inertia forces. We shall call it  the Stokes sublayer and denote it by 0,. 

As for D,, we can define a similar set of operations for D,. Let Q = (u- w y ) / U ,  
fi = v /U ,  and = { ( p -  P ) / U 2 )  Re,. Thus, the appropriate set of dimensionless 
dependent and independent quantities for D, is (C, 6, $5; E ,  y”, Re,). We shall refer 
to a physical system that has been scaled in this manner as being placed on the 
D,-scale. We define the Stokes limit as 

lim,: ReL-+ 0 with (2,  y”) fixed in 0,. 

The sequence of operations-which we shall refer to as S,-is equivalent to 

Hence, by applying S, to (1.1 a,  b, c)  we obtain the following system of equa- 
S, with D, and lim, replaced respectively by D, and lim, in S,. 

tions governing the flow in 0,: 

(2.8a) 

(2.8b,c) 

It is seen that this limiting system is equivalent to simply neglecting the inertia 
terms from (1.1 b, c), as was to be expected. Our formulation for the flow within 
D, is complete by requiring the solutions of (2.8) to satisfy the same boundary 
conditions as ( 1.1 d,  e) . 

It can easily be verified that these solutions are of the form: 

(2.9a, b)  

( 2 . 9 ~ )  
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where 8 = tan-l(y/x) varies in the interval 0 < 8 < n for y 2 0 (the ray 8 = 0 
coincides with the plate). It should be emphasized that (2.9) is only a Jirst 
approximation to the flow within D,, with the error diminishing as Re,  becomes 
small-and this holds uniformly for all x such that 2 

The lateral extent of D, may be estimated as follows. By using (2.9), the 
magnitude of the neglected inertia terms in (1.1 b )  is O( Uwy2/x2) when y2 < x2, 
while the viscous terms are of O(vUy/x3) when y2 < x2. Thus the inertia forces are 
much smaller than the viscous forces when 

y < v/(wx) or y" < l / (Re,Z) .  

(The same result would be obtained if we had used ( l . l c ) ,  but the inertia and 
viscous terms in the y-momentum balance would be individually of smaller order 
of importance compared with their counterparts in the x-momentum balance.) 
Therefore the Stokes sublayer, which exists for Re, < 1, may be defined by the 
following restrictions on the co-ordinates of a given point within it: 

l/Re,. 

0,: l/ReL < Z < 00, 0 < y" < l/(Re,Z). 

It is seen that the lateral dimension of D, diminishes when the co-ordinate 2 
becomes large. As a matter of comparison, the thickness of D, is < x / [  Re$, while 
the thickness of 0, is N x/<+Re$, so that the ratio of the former to the latter is 
< l/[+Re,. 

Now according to ( 2 . 9 ~ )  the value of the pressure at y = 0 is p = P, which is 
independent of the viscosity and the distance from the leading edge. Therefore, 
since the pressure is constant across D, and since p = P a t  y = 0, we must have 
p = P uniformly across D,, which was to be justified for 6 B 1. It must be empha- 
sized that this conclusion holds uniformly for all x such that 2 9 1/Re, or Re, 9 1. 

3. On the flow below the plate 
The previous section was devoted entirely to the flow above the plate, which 

was treated on the tacit assumption that it was not influenced in any manner by 
the flow below the plate. We now examine the nature of this bottom flow on the 
basis of a heuristic approach. 

To begin with, let us assume that the scale factors and the limit process valid 
in 0, also apply in some domain D, in the vicinity of and below the plate. Let us 
also assume that the application of AS', to ( l . l a ,  b ,  c) is permissible in this bottom 
region. Finally, let us assume that p = P is a good approximation within D,. 
The governing equations for the flow in D, are thus (2.1 a,  b,  c )  with aplax = 0. 
The associated boundary conditions are the no-slip conditions (2.3) and 

u2+U2+2wY as ?j+--co. 

For the present purpose an approximate solution of this system is sufficient. It 
will be seen that, by a suitable interpretation, the approximate solution (obtained 
from the momentum-integral method) given in M applies in D,, the essential 
result of which is 

(3.1) l + ( R - l ) ( 2 R + l ) ~  =$[2 , t  

t Due to a typographical lapse the term of unity was omitted in M .  Equation (4.7) of M 
should read like (3.1) above. 
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where A = wyP,/U2, Y, being the dimensional stream function at a location 
where the diffusion of surface-generated vorticity has practically decayed to zero. 

By transposing the unity term to the right-hand side of (3.1) and squaring the 
result, we obtain 

which, for a given c, is a cubic equation. However, not all three roots of (3.2) have 
relevance to  this problem, i.e. are solutions of (3.1). For example, the roots for 
< = 0 are ( Q , O , O ) ,  of which only A = # does not satisfy (3.1); for c = 9, only 
A = (0-67, -0.44) have relevance, where A = 0.67 is the result for y > 0 and 
A = - 0.44 is here interpreted as being valid for y < 0;  for ( = 4213, A = (1, - $) 
have relevance, where A = 1 applies in y > 0 and A = - $ applies in y < 0 ;  for 
5 = Q ,  only A = Q has relevance and it applies only in y > 0. It is thus evident 
that, beyond a certain c = eC, no solutions of (3.1) exist in y < 0. 

L 

FIGURE 2. Possible streamline pattern below the plate. 

This critical value tc may be easily determined as follows. In  M the approxi- 
mate expressions for the skin friction rW and the velocity components (u,, v,) at 
the distance y = 6 corresponding to Y, are given by 

It is thus seen that as A+-$, i.e. as (+ 4213, rW+O, u,+O, v,-+oo, and &-too. 
Thus it is suggested here that these limiting values are symptomatic of $ow 
separation and that (c = 4213 is a point of separation of the flow from the lower 
surface of the plate. 

Physically, this means that the kinetic energy of the viscous fluid in its down- 
stream motion near the plate is insufficient to overcome the work done on it by 
the 'dragging effect', acting in the opposite (upstream) direction, of the fluid far 
from theeplate in y < 0. An impasse is reached at approximately EC = 4213, 
where the forward motion of a fluid particle near the plate comes to a dead halt 
and subsequently has its direction reversed (figure 2). 

30 Fluid Mech. 25 
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The existence of flow separation below the plate means that the initial assump- 
tions, adopted on a heuristic basis, cannot be justified. In other words, the 
mathematical system adopted for the representation of the flow below the plate 
is not accurate in the least. Certainly surface-generated vorticity is no longer 
confined to a thin layer adjacent to the plate, rather it leaves the surface along 
streamlines that penetrate sharply into the outer flow. Moreover, there is a 
tendency for surface-generated vorticity to be transported upstream along 
streamlines that have been reversed in direction, so that there is a strong possi- 
bility of the generation of an upstream wake. (It is surmised that, since the 
surface-generated vorticity diffuses as it is convected upstream, its net effect on 
the flow far upstream is negligible.) Finally, since the undisturbed streamline 
pattern has been severely disrupted, the assumption that p = P in D, is un- 
tenable. Thus a substantial advance in the theory must be made before the exact 
nature of the separated flow phenomenon and its subsequent effects on the flow 
can be fully understood. 

Since we are considering an infinitely long plate, the separation phenomenon 
is, relatively speaking, a local one-occurring close to the leading edge. At large 
distances downstream such a local phenomenon must ' die out ', so that the flow 
eventually settles down to a more regular behaviour. This is ascertained by the 
deduction that a Stokes flow can be found which satisfies (2.8) and (1.1 d,  e) in 
y < 0; it  is of the form 

where 8 varies in the interval -n- < 6 < 0. Thus (3.4) describes the flow very 
close to the plate, where inertia forces are much smaller than viscous forces. 
More precisely, such a flow exists when Re, 4 1 and is uniformly valid in the 
domain x xc and I yI < v/wx, where xc is the point of separation of the flow from 
the lower surface of the plate. Note that, since v < 0, the undisturbed streamlines 
have been shifted outwards from the plate in the negative y-direction due to the 
action of viscosity. 

4. Discussion 
The analysis given in Q 2 justifies on a rigorous basis the strong-interaction 

solution given in M for the flow in D,-i.e. i t  is in fact a limiting solution of 
system (1.1). In  this concluding section we shall examine a different description 
of the flow in D, in the light of this analysis. We shall first find it expedient to 
exhibit in a general manner the physical situation. 

Consider an elemental volume A V fixed at I);. The velocity components there 
are (ug,vg). Owing to the retarding action of viscosity, the positive quantity 
AM, = pv,wAV represents that part of the total net tangential momentum of the 
fluid removed from A V  in unit time with the mass flux pus in the positive 
y-direction, the total net amount removed being p{a(u,v,)/ay) AV. (Here we 
neglect the small net contribution of tangential momentum removed from A P 
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by a molecular process which transfers tangential momentum flux from points of 
high velocity to points of low velocity.) In  order to conserve momentum in A V 
in the tangential direction, AM, must be balanced by a net decrease of amount 
(AN,+Ap)  in AT’ per unit time, where AM, = -pug(au8/8x)AV represents half 
of the total net decrease in tangential momentum that is transported with the 
mass flux pug, and Ap = - (ap/ax) AV represents the net decrease in the pressure 
force acting on A V  in the tangential direction. 

The physical point of view adopted by Li (1956), Murray (1961) and Van Dyke 
(1962) for the weak interaction case and by Ting (1960) for the intermediate and 
strong interaction cases is that AMy is balanced entirely by Ap, where the contri- 
bution AM, is negligible (i.e. there is no acceleration of the fluid in the tangential 
direction) and Ap is due to a favourable pressure gradient regarded as being 
induced by the vorticity interaction.? However, when such a physical argument 
is tested in the situation wherein the vorticity interaction is intense-i.e. against 
the rigorous results of 5 2, it fails to meet the test since that analysis does not 
produce such a pressure gradient. Thus the corresponding mathematical solution 
cannot be a limiting solution of system (1.1) as we have posed it. 

The actual physical situation in the strong interaction case must be such that 
AM, is balanced entirely by AM, in AV,  i.e. all the changes are associated with 
the mass motion. Thus the presence of external shear at D: provides a ‘medium’ 
for the continual removal of tangential momentum away from 0, in the vertical 
direction, the consequence being that the removed momentum cannot contribute 
to the skin friction drag. Owing to the monotonic behaviour of pvUa with respect 
to x ,  it  is reasonable to infer that this represents the correct physics of the situ- 
ation for all interaction intensities. 
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t This point of view is supported by Toomre & Rott (1964) who examined in part the 
unbounded flow external to D, on the basis of a symmetrical inviscid flow model. This 
model has however several drawbacks : (i) it is vulnerable to questions of uniqueness since 
the oncoming vorticity distribution is discontinuous; (ii) it does not simulate all the 
essential phen0menace.g. an inviscid fluid cannot transfer momentum irreversibly (in the 
thermodynamic sense) when vorticity is present, and (iii) it cannot accommodate the possi- 
bility of tangential disturbances occurring a t  the boundaries and their resultant trans- 
mission into the flow (see $1). 

30-2 




